

Effect of under filling tube

- High Citrate concentration
- Dilution of clotting factors
- Inadequate recalcification

ΑΡΤΤ

PROLONGED CLOTTING TIMES!

Upper Limit Reference Range

A 4.5ml vacutainer collection tube should contain at least 4ml of blood

Less than that could give falsely prolonged clotting times

ALSO be aware that a high Haematocrit may give false results even if tube is properly filled.

Citrate Ratios

- HCT 0.25 0.55 clotting tests generally unaffected
- HCT >0.55 false results (prolonged times)
 - Neonates
 - Polycythaemia (cardiac, pulmonary, haematological)
- Correct as per graph

Haemostatic challenges in Critical Care

Dr Marion Münster | Manager Medical & Scientific Affairs | Sysmex South Africa

Maintain or restore haemostatic balance in inherently unstable patients

Disseminated intravascular coagulopathy

- **Thrombotic microangiopathies**
- Massive transfusion
- Thromboprophylaxis in ICU
- Heparin induced thrombocytopenia
- The role of the laboratory

DISSEMINATED INTRAVASCULAR COAGULOPATHY

Normal Response to vessel damage:

Release of **Tissue factor** – coagulation cascade – THROMBIN formation – fibrinogen converted to fibrin

VWF mediated platelet adhesion – platelet activation and aggregation

➡ processes initiated simultaneously – clot "seals the gap"

fibrinolysis activated – clot breakdown – "maintains flow"

Highly <u>regulated</u> process – localisation of clot formation maintained through fine balance of procoagulant and anticoagulant mechanisms.

DIC when:

There is widespread endothelial damage or

Thrombin generation overwhelms inhibitory mechanisms

➡ free thrombin becomes systemic

Definition of DIC :

An acquired clinico-pathologic syndrome caused by <u>unregulated</u> release of thrombin into the general circulation with loss of localisation arising from different causes.

widespread endothelial dysfunction

Infections

Trauma

Obstetric complications

Malignancy

Severe allergic/toxic reactions

Severe immunologic reactions

Vascular disorders

Widespread generation of fibrin clots throughout microvasculature

- \longrightarrow obstruction of vessels \rightarrow multiple organ dysfunction
 - (especially kidney, brain, lung, liver, heart)
- Red cell fragmentation haemolysis
- \longrightarrow Consumption of clotting factors, platelets and fibrinogen \rightarrow bleeding manifestations

Highly variable – depends on underlying cause and rapidity of process

Subclinical laboratory abnormalities

multiorgan failure metabolic derangement haemodynamic instability widespread bleeding DEATH

Challenge #1 Recognition of DIC!

Does the patient have an underlying disorder associated with DIC?

- Be vigilant can develop at any time
- DIC is not a disease
- » it is always secondary manifestation of another pathology
- » Must take into account clinical and laboratory findings
- Be aware of subtle signs of thrombotic process
- » Reduced urine output
- » Change in alertness/confusion
- » Drop in PO₂

By the time bleeding is observed – late stage!

- » Oozing at venepuncture sites
- » Increased bleeding into surgical drains
- » Petechia/bruising

Drop in platelet count – regular monitoring is essential

- » Multiple causes of thrombocytopenia in ICU setting
- » Platelet count <100 x 10⁹/L

Elevated D-Dimers

- » Other causes of ↑ D-Dimers in ICU
- » Rising levels are highly significant
- Prolonged prothrombin time
- » >3 seconds above UL of normal

Diagnostic scoring systems in use – Overt DIC or non-Overt DIC

Other lab findings:

- » ↓ Antithrombin/Protein C/FXII
- » ↓ multiple clotting factors
- » Red cell fragments

Management of DIC

Manage the underlying condition!

Haemodynamic support - maintain good perfusion

- If actively bleeding (or at high risk)
- » Platelets maintain ≥ 50 x $10^{9}/L$
- » FFP maintain PT/APTT close to normal range as possible
- » Cryoprecipitate maintain fibrinogen \ge 1 g/L
- » Packed red cells as required

No real evidence to support widely held belief that blood product support "Fuels the Fire"!

Systemic anticoagulation

- » No consensus on this issue generally reserved for overt thrombosis
- » Major vessel thombosis Rx with full therapeutic dose heparin anticoagulation
- » Microvascular occlusion lower doses of heparin

Antifibrinolytic therapy

- » Generally contraindicated
- » APL may be considered in exceptional cases (high risk of hyperfibrinolytic intracranial bleeding)

Specific inhibitors of coagulation

- » Antithrombin concentrate
 - Randomised control trials no significant benefit in overall mortality reduction
- » Activated protein C concentrate
 - Some benefit shown in severe sepsis
 - Improved survival but increased bleeding
 - Avoid if platelets <30 x 10⁹/L

THROMBOTIC MICROANGIOPATHIES

Group of related disorders characterised by widespread microvascular occlusion by plateletrich aggregates

Thrombotic thrombocytopenic purpura (TTP)

HELLP syndrome

Haemolytic uraemic syndrome

TTP – clinical features

Classic symptoms:

- » Thrombocytopenia
- » Microangiopathic haemolytic anaemia
- » Fluctuating neurological signs
- » Renal impairment
- » Fever

Hallmark

- » Excessive platelet aggregation because of ultra large VWF multimers
- » Deficiency of ADAMTS13

TTP – precipitating factors

Infection

- » HIV CD4 <250 x 10⁹/L
- » Hepatitis

Pregnancy

Malignancy

Drugs

Autoimmune disease

Post bone marrow transplant

(familial form)

TTP – laboratory findings

- Severe thrombocytopenia
- Red cell fragments but may only appear after 24-48 hours after clinical presentation
- Coagulation profiles usually normal
- ADAMTS13 levels reduced/absent
 - Not routinely available

Investigations required in suspected TTP

- FBC and peripheral smear review
- Reticulocyte count
- PT, APTT, fibrinogen and D-Dimers
- Urea and electrolytes
- Urinalysis

High index of suspicion

- Low platelets, neurological signs and MAHA treat as TTP
- Very high mortality sudden coronary artery occlusion

<u>Immediate plasma exchange – life saving!!</u>

- Commence within <24 hours
- Daily single volume exchange
- Continue until at least 2 days after complete remission
- If plasma exchange not possible plasma infusions

TTP-Concomitant treatment

- Folate supplementation
- Adjuvant corticosteroid therapy for 3 days can be considered
- Platelet transfusions are contraindicated unless there is life threatening haemorrhage
- Red cell transfusions according to clinical need
- Upon platelet recovery (>50 x 10⁹/L) low dose aspirin

TTP outcome

- Prior to plasma exchange mortality rates >90%
- With prompt plasma exchange ~10-30%
- Reduced level of consciousness at presentation overall survival ~50%
- Average number of plasma exchange procedures to achieve remission 15.8 (range 3 – 36 in one series)
- Relapses common urgent self referral is advised if patient develops symptoms suggestive of relapse

MASSIVE TRANSFUSION

<u>Definition</u>: replacement of ½ blood volume in 4 hours; 1 blood volume in 24 hour (adult 70ml/kg; child 80ml/kg) ~ adult 4 units/4 hours

- Underlying condition necessitating transfusion must always be considered
- Excessive haemorrhage (trauma, surgical, obstetric, GIT bleeds etc)
- Factors that exacerbate bleeding
 - Hypothermia
 - Metabolic acidosis

1. Dilutional

- Replacement of blood volume with packed red cells
- Displacement of plasma and platelets
- There is insufficient evidence that the use of blood product replacement ratios of RBCs to component therapy (FFP, platelets, cryoprecipitate) influences morbidity and mortality
- Some institutions use ratio RBC:FFP:PLTs ~2:1:1
- (PLT = adult unit)

2. Transfusion reaction

- Signs may be subtle especially in anaesthetised or comatose patients
- Must be acutely alert and perform regular vital sign observations (BP, T °C, pulse)
- DIC may develop due to acute haemolysis

Management of massive transfusion

Should have massive transfusion protocol

Vigilant monitoring

Include measurement early on and frequently:

Parameter	Values to Aim for	
Temperature	> 35°C	
Acid-base status	pH >7.2, base excess <-6, lactate <4mmo/L	
Ionised calcium	>1.1mmol/L	
Platelets	> 50 x 10 ⁹ /L	
PT/APTT	<1.5 x normal	
Fibrinogen	>1g/L	
Hb	In context of haemodynamic status and tissue perfusion	

THROMBOPROPHYLAXIS IN ICU

Risk of VTE in ICU

- Patients at substantially increased risk
- Significant contributor to morbidity and mortality
 - Post-mortem reviews of patients dying in ICU
 - Pulmonary embolism attributable as cause of death ~27%
 - 15% of all in-patient deaths PE
- Most have multiple risk factors (predate ICU admission)
 - Recent surgery
 - Immobilisation
 - Trauma
 - Sepsis
 - Malignancy
 - Increased age
 - Respiratory failure
 - Previous VTE

Risk of VTE in ICU - II

- Initial risk factors confounded by new ones acquired in ICU
 - Immobilisation
 - Pharmacological paralysis
 - Central venous catheterisation
 - Additional surgical procedures
 - Sepsis
 - Vasopressors
 - Haemodialysis
- Clinically undetected DVT may be present on admission to ICU
 - 5 studies using Doppler ultrasound (990 pts 5.5% DVTs on admission, 29% for those with no prior thromboprophylaxis)
 - Most DVTs located in calf veins and asymptomatic BUT
 - Cannot predict who will become symptomatic and develop complications
 - Massive PE frequently occurs without warning often fatal

Risk of VTE in ICU - III

- Without adequate prophylaxis
 - Major trauma
 - Multisystem failure
 - \rightarrow > 50% risk of DVT

 \rightarrow PE 3rd commonest cause of death after day 1

- Extensive trials of thromboprophylaxis in medical and surgical patients but very few in critical care
- Risk-benefit ratio may be different

Based on 2 systematic reviews:

- With few exceptions required for ALL ICU patients
- Decision regarding initiation and method based on balance of bleeding and thrombotic risk i.e. mechanical vs heparin
- Prophylaxis reviewed daily an altered based on clinical status
- Prophylaxis should not be interrupted for procedures unless high risk of bleeding
- Procedures such as insertion or removal of epidural catheters planned for nadir of anticoagulant effect
- Patients with no/suboptimal prophylaxis Doppler US screening
- High risk patients continue until discharge (includes in-patient rehabilitation) and beyond if immobility ongoing

Suggested VTE prophylaxis in critically ill patients sysmex

Bleeding Risk	Thrombosis Risk	Prophylaxis
Low	Moderate	Low dose heparin (5000u sc bd) or LMWH at prophylactic dose
Low	High	LMWH at prophylactic dose
High	Moderate*	Stockings ± intermittent pneumatic compression
High	High#	Stockings ± intermittent pneumatic compression and LMWH

* Medical, post general surgery# Trauma, orthopaedic surgery

HEPARIN INDUCED THROMBOCYTOPENIA

Definition: transient drug induced autoimmune prothrombotic disorder initiated by heparin

- Heparin exposure can induce formation of pathogenic IgG antibodies → platelet activation via PF4/heparin complex on platelet surface
- Thrombocytopenia and thrombin generation

Increased risk of venous and arterial thrombosis

- Varies widely based on type of heparin and patient group
- Unfractionated heparin >> LMWH
- Surgical patients >> medical/obstetric patients with equal heparin exposure
- Postoperative orthopaedic patients on UFH highest risk (up to 5%) require more intense platelet count monitoring
- Pregnant woman on LMWH very low risk

Overall incidence ~0.2% of patients exposed to heparin

Clinical diagnosis of HIT

High index of suspicion

- Thrombocytopenia or significant drop in platelet count (>50%) with or without any of the following:
- Venous thrombosis
 - Warfarin induced limb necrosis, PE, DVT, cerebral venous thrombosis etc
- Arterial thrombosis
 - Lower limb thrombosis, CVA, myocardial infarction etc
- Skin lesions
 - At heparin injection site, skin necrosis, erythematous plaques
- Acute systemic reaction to heparin (25% of HIT patients)
 - Fever, chills, respiratory distress, hypertension, cardiorespiratory arrest

Clinical diagnosis II

- Isolated HIT drop in platelets without thrombosis
- Retrospective studies
 - ~25% develop clinically overt thrombosis after stopping heparin, usually after 1 week
 - ~ 50% subclinical thrombosis on Doppler
- Early heparin cessation does not eliminate risk alternate anticoagulation required
- Thrombocytopenia usually only develops after 5-10 days of Rx
- Median nadir ~55 x 10⁹/L
- Bleeding and PLT count <10x 10⁹/L think of alternate cause (e.g. post transfusion purpura)
- Patients who have received heparin in past 100 days may develop fall in PLT count within 1 day of heparin re-exposure

Laboratory diagnosis of HIT

- Commercially available PF4-dependent antigen immunoassays
 - Assays high sensitivity but poor specificity not diagnostic if POS
- Functional assays of platelet activation and aggregation
 - Technically demanding and not readily available
 - In most settings, diagnosis is based on clinical picture alone

Furthermore:

- Clinically insignificant HIT abs common patients with heparin exposure 5-100 days earlier
- In the ICU setting, HIT is uncommon (0.3 0.5%) whereas thrombocytopenia from other causes is very common (30 – 50%)
- BUT must be considered as thrombosis can be fatal

- Stop heparin immediately and do not reinstate
 - In patients who develop thrombocytopenia (or \downarrow 50%)
 - HIT strongly associated with thrombosis (OR 12 40)
- Alternate anticoagulant must be commenced
- Alternative anticoagulants approved for Rx of HIT
 - Direct thrombin inhibitors (parenteral)– Argatroban and Bivalirudin
 - Heparanoid Danaparoid (not in USA)
 - Fondaparinux in pregnancy if Danaparoid not available
 - Direct oral anticoagulants have not been validated and approved
- Therapeutic doses of anticoagulation recommended even in absence of thrombosis
- Platelets transfusions –contraindicated

Direct Thrombin Inhibitors - Bivalirudin

- Trade name Angiomax
- Synthetic form of hirudin
- Given IV
- Dose adjusted to APTT 1.5 2.5 x Normal
- Measure APTT 4 hours after Rx started or infusion rate altered, and then once daily
- Very short half-life reversible
- Renal excretion
 - Dose must be reduced by 50 80% in mild renal impairment
 - Relatively contraindicated in severe failure

Direct Thrombin Inhibitors - Argatroban

- Alternative for HIT rarely used
- Increases INR
 - Must consider this if patient is on warfarin co-therapy
 may need
 higher therapeutic target
- Given IV
- APTT target 1.5 3 x normal baseline
- Hepatobiliary excretion
 - Dose must be reduced in liver failure

Heparanoid - Danaparoid Sodium

- Trade name Orgaran
- There must be no evidence of cross-reactivity(?)
- Given IV
- Anti-FXa target range 0.5 0.8 anti-Xa u/ml
- Must monitor if renal impairment or >90kg
- 24 hour dose can be divided into 3 bolus doses

Fondaparinux

- Pentasaccharide
- Synthetic heparin derivative
- Does not generate anti-heparin antibodies and has been safely used
- BUT not licensed for this use.
- Occasionally used off label in pregnancy as does not cross the placenta

- 5-20% frequency of new thrombosis despite treatment of HIT patients with alternate anticoagulant
- ACCP guidelines patients receiving heparin or did so within previous 2 weeks should be investigated for diagnosis of HIT if
 - PLT count falls >50%
 - And/or thrombotic event occurs

THE ROLE OF THE LABORATORY

Patient monitoring

- Vigilance Platelet counts
 - Trend analysis is critical
 - Must provide early alert to clinicians or any drop in PLT count
- Vigilance RBC fragments
 - Alerts for unsuspected microangiopathies
- Speedy TATS coagulation testing
 - Suspected DIC
 - Massive transfusion
 - Anticoagulation monitoring

Concluding Comments

- Thrombotic and bleeding problems are common in the ICU setting
- Patients are inherently unstable and can deteriorate rapidly
- High index of clinical suspicion is paramount
- Vigilant laboratory monitoring with proactive communication with clinical team could be life saving.

Thank you very much for your attention!